Market Uptake Support for Intermediate Bioenergy Carriers

Residual biomass mobilisation strategies based on intermediate bioenergy carriers

Myrsini Christou, Ioanna Papamichael, Christos Zafiris CRES - Center for Renewable Energy Sources and Saving

Kyriakos Panopoulos, Tzouliana Kraia, George Kardaras CERTH - Center for Research and Technology Hellas

18th International Conference on Renewable Resources and Biorefineries, Bruges/Belgium , 1 - 3 June 2022

CONTENTS

- MUSIC project
- Intermediate bioenergy carriers
- The Greek Case-study
- Biomass supply strategies
- Conclusions

RATIONALE & OVERALL OBJECTIVE

Why Intermediate Bioenergy Carriers – IBCs ?

- Biomass is bulky and difficult to handle.
- Converting it into intermediary products like **Pyrolysis Oil, Torrefied Biomass & Microbial Oil** increases the energy density and makes it easier to transport, store and use.

General objective

 To facilitate the further introduction of intermediate bioenergy carriers by developing feedstock mobilisation strategies, improved logistics and IBC trade centres.

INTERMEDIATE BIOENERGY CARRIERS

Pyrolysis oil	Torrefied biomass	Microbial oil
Obtained by fast heating of biomass in the absence of oxygen, resulting in a liquid IBC.	Obtained by slow heating of biomass in the absence of oxygen, resulting in a solid IBC.	Obtained by fermentation of lignocellulosic-derived sugars from biomass, resulting in a liquid IBC.

GREEK CASE STUDY: USE OF TORREFIED BIOMASS IN DISTRICT HEATING PLANT

➢Operates an extensive district heating network – 2,000 public and residential buildings – 3,000 to 5,000 consumers.

From 2005 until 2020 – heat capacity from Amyntaio CHP plant at 7€/MWh.

- ➤Implemented a 30 MW_{th} biomass/lignite co-firing district heating plant.
- ➤Current fuel-mix (50%-50% energy ratio).
 - >Wood-chips (20 €/MWh)
 - ≻Lignite **(13€/MWh)**

Produced heat selling price rose from 41,3 €/MWh (2019) to 56,8 €/MWh (2021).

Theoretic biomass potential in West Macedonia

Kastoria region:

Total biomass:~ 47,000 t dm/y

- 41,000 t dm/y mainly straw
- 4,000 t dm/y pruning
- 1,800 t dm/y firewood

Florina region:

Total biomass:~ 120,000 t dm/y

- 104,000 t dm/y cereals (of which 55,600 t dm/y is corn residues)
- 11,000 t dm/y pruning (vineyards, fruit trees)

Kozani region:

Total biomass:~ 225,000 t dm/y

- 203,000 t dm/y cereals (of which 50,000 t dm/y is corn residues)
- 8,000 t dm/y pruning (vineyards, fruit trees)

Grevena region: Total biomass:~ 91,000 t dm/y mainly straw

Biomass availability

Availability of biomass near the district heating plant is significant, including mainly corn stalks and cobs and tree pruning, still not exploited due to challenging logistics.

Biomass availability year around												
Months 1 2 3 4 5 6 7 8 9 10 11 12									12			
Straw												
Corn and sunflower residues												
Pruning												
Forest residues												
Residues from forest industries		Residues from forest industries										

BIOMASS MOBILIZATION

Music-mygis model

Objective: A GIS application to help the user select the fields where the biomass will be collected, places to be stored/torrefied and sold and calculate the related logistics costs.

MODEL PARAMETERS

- Selling point: the final destination of the biomass (client).
- **Transportation vehicle**, which will transport the biomass from the storage point to the selling point. Each vehicle type takes into consideration:
 - Capacity (volume)
 - Maximum payload (weight)
 - Biomass packaging type (e.g.. Big bags, rectangular bales, etc.)
 - Transportation cost (Fuel/oil consumption and costs, service costs etc.)
 - Time and cost to load/unload
- **Storage point**: is the collection point of all biomass before it is transported to the client.
- Collection vehicle, which will transport the biomass from the collection points to the storage point. It has similar functionality to the transportation vehicle.
- **Crops**: Crop residues (maize, vineyards, pome fruits, stone fruits and other tree species).

Selection of crops and vehicles

cropcode	biomass_cal_value	biomass_annual_ef	crop_gr	crop_en	id	char_cal_value
45.2	18330	0.21	Λοιπές καλλιέργειες - δενδρώδεις	Other crops - arboraceous	- 4	20070
36.3	19130	0.42	Λοποί αμπελώνες για επιτραπέδια χρήση	Other vineyards for table use	8	20950
36.2	19130	0.42	Λοιποί αμπελώνες για παραγωγή οίνου	Vineyards for wine production	9	20950
1	17570	0.12	Σιτάρι	Wheat	11	20910
12	17770	0.31	Βαμβάκι	Cotton	15	21150
15	20080	0.13	Ελαιώνες πιστοποιημένης ελαιοκαλλιέργειας	Certified cultivation olive grove	16	21990
16	16090	0.14	Ενεργειακές καλλιέργειες	Energy crops	17	19140
2	16900	0.12	Λοιπά σιτηρά	Other grain	12	20110
4	16090	0.14	Ελαιούχοι σπόροι	Oilseeds	13	17700
21	19460	0.5	Καρποί με κέλυφος	Husk fruits	19	21410
49	20250	0.21	Λοιπές καλλιέργειες - δασικά δέντρα	Other crops - forest trees	5	22170
66	19650	0.53	Πυρηνόκαρπα	Stone fruits	6	21610
67	19220	0.41	Μηλοειδή	Pome fruits	7	21040
20.2	19960	0.53	Ροδακινιές μεταποίησης	Industrial production peaches	1	21860
3.1	20080	0.4	Αραβόσιτος ποτιστικός	Irrigation com	2	23890

Choose tra	nsport	ation v	enicle	
-77-		Ford	l Ran	ger
and		D	**	ă
	0	0	1.31	1.28
-	S	cania	R164	1L480
	6	Ð	-32-	*
a make	5.54	7.99	7	6.89
	Tr	actor	with	trailer
and Alt	60	A	-32-	*
	7 77	3.7	2.8	2.55

Vehicle specifications Is not a geographi	c layer
Can carry Charcoal - Powder	Service cost (€/km)
YES	0.09
Maximum payload (tn) Charcoal - Pellets	Can carry Biomass
13.00	YES
Vehicle name	Can carry Biomass
Scania R164L480	YES
Capacity (m3)	Can carry Biomass
20	YES
Average speed (km/hr)	Can carry Biomass
65	YES
Work cost (ë/hr)	Vehicle type
15.00	Truck
Load/unload time (hrs)	usenD
2.00	0
Fuel cost (€/I)	Maximum payload (
1.20	20.00
Fuel consumption (I/km)	Maximum payload ()
0.15	5.54
Payback €/year (vehicle)	Maximum payload (
0	7.99
Payback €/year (trailer)	Maximum payload (
5500	7.00
Year expenses (€)	Maximum payload (
1000	<u>6.89</u>
	Maximum payload (h

char_annual_ef

0.17

0.24

0.24

0.09

0.26

0.11

0.12

0.09

0.12

0.43

0.17

0.27

0.7

0.42

0.14

V

0.09
Can carry Biomass - Rectangular bale YES
Can carry Biomass - Bulk YES
Can carry Blomass - Round bale
Can carry Biomass - Big bags YES
Vehicle type Truck
usenD O
Maximum payload (tn) 20.00
Maximum payload (tri) Biomass - Rectangular bales 5.54
Maximum payload (tn) Biomass - Round bales 7.99
Maximum payload (tn) Biomass - Bulk 7.00
Maximum payload (tri) Biomass - Big bags 6.89
Maximum payload (In) Charcoal - Powder 5.40

The model output consists of the **total biomass transportation cost** (as a sum of fixed, working, fuel and service cost), and the total **distance**, routes and time for the **specific collection-storage-sale supply chain**.

Individual costs for the two stages: (Field->Storage Point Storage Point ->Solling Point)	Total Cost				
Type of the vehicle selected	Collection-storage trips				
Transport method	Collection-Storage total				
Total quantity (t)	(km)				
Routes	Storage - Sell trips (km)				
Total distance (km)	Storage Sell total (km)				
Distance based-time (hours)	Total routes				
Transport time (hours)	Total distance (km)				
Fixed cost (€/h)	Total time (hours)				
Work cost (€/h and €/t)	Total cost (€)				
Fuel cost (€/h and €/t)	Grand total per ton (€)				
Service cost (€/h and €/t)	Grand total per MJ (€)				
Energy content (MJ)					
Cost (€)					
Cost per ton (€/t)					

Cost per MJ (€/MJ)

Results

Collection -> Sto	rage null(ID: 12)	Storage null(ID: 12	?) -> Sell	Collection point	Field	Storage	Crop	Annual biom	Annual charc	Total quantity
Vehicle Transport method	Tractor with trailer Round bales	Vehicle Tr Transport method	ractor with trailer Pellets	77564	63212	12	Irrigated corn	0.424	0.301	0.424
Routes	51.89 17	Routes	51.89 10	77379	62962	12	Irrigated corn	1.224	0.867	1.648
Distance-based time (ho	ours) 44.42	Distance-based time (hours)	52.16 1.04	77213	62752	12	Irrigated corn	1.161	0.822	2.809
Fixed cost (€/hour)	23.83	Fixed cost (€/hour)	6.04 1.70	82488	71399	12	Irrigated corn	1.149	0.814	3.958
Work cost (€/hour) Fuel cost (€/km)	10.00 0.26	Work cost (€/hour) Fuel cost (€/km)	10.00 0.26	82728	71759	12	Irrigated corn	1.220	0.864	5.178
Service cost (€/km) Fixed cost (€/tn)	0.03 0.81	Service cost (€/km) Fixed cost (€/tn)	0.03 0.21	77604	63264	12	Irrigated corn	1.172	0.830	6.350
Work cost (€/tn) Fuel cost (€/tn)	4.77 0.23	Work cost (€/tn) Fuel cost (€/tn)	1.21 0.27	77558	63206	12	Irrigated corn	0.476	0.337	6.826
Service cost (€/tn)	0.03	Service cost (€/tn)	0.03	74957	58827	12	Irrigated corn	0.588	0.417	7.414
				82645	71641	12	Irrigated corn	1.171	0.829	8.585
				77596	63254	12	Irrigated corn	1.171	0.830	9.756
				77376	62959	12	Irrigated corn	1.216	0.861	10.972
				77559	63207	12	Irrigated corn	0.279	0.198	11.251
				77591	63249	12	Irrigated corn	0.630	0.446	11.881
		Total		69365	49426	12	Irrigated corn	1.125	0.797	13.006
Collection-storage trip Collection-storage tota	is al km		17 44,42	74956	58826	12	Irrigated corn	1.233	0.873	14.239
Storage-sell trips			10 52 16	78915	65520	12	Irrigated corn	0.668	0.473	14.907
Total routes			27	77359	62938	12	Irrigated corn	1.166	0.826	16.073
Total time (hours)			29.87	77489	63120	12	Irrigated corn	1.173	0.831	17.246
Grand total per tonne	(€)		377.94 7.56	77562	63210	12	Irrigated corn	1.204	0.853	18.450
				77594	63252	12	Irrigated corn	0.645	0.457	19.095
				77560	63208	12	Irrigated corn	1.181	0.836	20.276
H へ Hi	S 🖾 🤶 (🌢 🧿 🗢 🥵 🖡	I 🖬 🖸 🤇	o 🛚 🛃					^ E	NG 3/3/2021

o x

-

×

C 🕁 O 🚺 🏞 M :

_

Binter app

An interactive platform for mobilising feedstock towards IBC production for facilitating regional biomass trade

A smart phone app tool called 'binter', through which farmers/bio-feedstock producers advertise their available biomass by auto-matically uploading it in data bases so that IBC plants can then organize the feedstock logistics towards collection of the desired types of biomass.

Farmer

Networking event at DBFZ in Leipzig, 30.05.-01.06.2022, Day 3 | MUSIC - internal consortium meeting

Binter app- online environmental data and Green certificate tool

Binter app was expanded to include a simplified estimation of potential emissions reductions. An online environmental data and green certificate tool is developed by CERTH, based on RED II methodology and principles, SimaPro v9.1 software and literature data.

Thus Binter app determines:

- biomass quantities in tonnes,
- moisture con-tent in % wet based,
- energy content in MJ/kg and,
- distance from the DETEPA district heating plant in km,
- > the total GHG from the use of each biomass type,
- (in g CO2 eq/MJ of produced heat)
- ➤ and the GHG emissions savings in %.

CONCLUSIONS

- > Torrefaction can homogenize biomass feedstocks with diverse characteristics -> standardization -> contractualization.
- > The MUSIC-MyGIS model
 - is a GIS application that contains cartographic backgrounds, administrative layers, road network, storage and selling points, land use maps and data bases with data on crop types, yields and energy potentials, biomass forms and transport means. Data are used in algorithms, so that the interested party can calculate not only the final cost, but also the costs of the intermediate phases, until the final delivery to the end user.
 - > Logistics are processed in two stages: Field \rightarrow storage/torrefaction unit \rightarrow end user.
 - > Total routes, distances, and times as well as total costs, costs per ton and per MJ for each stage are calculated.
- ➤ The binter app
 - A smart phone app tool to support the market development from mobilisation of feedstock towards IBC production and use.
 - Farmers/biomass producers advertise their available biomass by automatically uploading it in a data bases that IBC plants can then organize the feedstock logistics towards collection of the desired types of biomass.
 - Photographs of the available biomass together with the geographic, quantity estimate and possible other relevant data are upload on the platform, so that IBC producers can organise efficient collection.
- Synergies farmers, transporters, end-users \rightarrow Mobilization of unexploited quantities \rightarrow Security of supply. 19

Thank you for your attention!

For more info: mchrist@cres.gr WWW.MUSIC-H2020.EU #MUSIC_H2020

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 857806.

Market Uptake Support for Intermediate Bioenergy Carriers